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Introduction
Eigenfunction expansions are the fundamental tool in the analytical or hybrid
numerical-analytical solution of various diffusion and convection-diffusion
problems in the engineering sciences. Both in the realm of exact integral
transformations or separation of variables of linear problems[1-3], or in the
more computationally oriented context of the so-called generalized integral
transform technique (GITT) [3-5], the solution is a priori assumed in the form of
an eigenfunction expansion, extracted from the basis offered by an associated
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Nomenclature
a* = rectangular region half-length in the x*

direction
b* = rectangular region half-length in the y*

direction
B = boundary condition operator, equation

(2b)
Bik = biot numbers (k = r, z, x or y)
c* = rectangular region half-length in the z*

direction
d(x) = linear dissipation coefficient, equation

(2a)
f(x) = initial condition function, equation (1b)
hk = heat transfer coefficients (k = r, z, x or y)
k* = thermal conductivity
K, K1, K2 = aspect ratios
K(x) = diffusion coefficient, equation (2a)
L* = cylinder length
L = equation operator, equation (2a)
n = outward drawn unit normal vector
N = single-series truncation order
NR, NZ = multiple-series truncation orders
P(x, t, T ) = nonlinear equation source term,

equation (1a)
r*, r = radial co-ordinate, dimensional and

dimensionless
rw* = cylinder radius
S = boundary surface region

t*, t = time variable (or corresponding spatial
variable), dimensional and
dimensionless

T(x, t) = potential distribution
V = problem (1) spatial domain
w (x) = convection (or storage term) coefficient,

equation (1a)
x*, x = spatial co-ordinate, dimensional and

dimensionless
x = position vector, problem (1)
y*, y = spatial co-ordinate, dimensional and

dimensionless
z*, z = spatial co-ordinate, dimensional and

dimensionless

Greek symbols
α = thermal diffusivity
αm = eigenvalue, equation (8)
α (x) = boundary condition coefficient,

equation (2b)
β

l

= eigenvalue, equation (8)
β(x) = boundary condition coefficient,

equation (2b)
γn = eigenvalue, equation (8)
φ(x, t, T ) = non-linear boundary equation source

term, equation (1c)
µi = global eigenvalue, equation (8)
ψi(x) = normalized eigenfunctions, problem (4)
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eigenvalue problem, which includes as much information as possible from the
original partial differential equation operators. In this sense, different classes of
problems were handled through integral transforms, including not only the
wide spectrum of diffusion and convection-diffusion, but also eigenvalue
problems themselves, boundary layer formulations and Navier-Stokes
equations[3-5].

In all such applications, the final solution for the related potential is
expressed as double or triple infinite summations for two or three-dimensional
transient problems, or a double summation for a three-dimensional steady
problem. Each of these summations is associated with the eigenfunction
expansion in a corresponding spatial co-ordinate, eliminated through integral
transformation from the partial differential system, and recovered analytically
through such expressions. From a computational point of view, only a truncated
version of such nested summations can be actually evaluated. However, the
plain truncation of these series, individually, to a certain prescribed finite order,
is certainly not an efficient approach and, to an extent, even a risky one. In this
way, some still important information to the final result can be disregarded,
while other terms are accounted for that have essentially no contribution to
convergence in the relative accuracy required. Therefore, for an efficient
computation of these expansions, the infinite multiple summations should first
be converted to a single sum representation, with the appropriate re-ordering of
terms, according to their individual contribution to the final numerical result.
Then, one would be able to evaluate a minimum number of eigenvalues and
related derived quantities, such as eigenfunctions, norms, transformed initial
conditions and source terms, as many as required to reach the user prescribed
accuracy target. This aspect is even more evident in the use of the generalized
integral transform technique (GITT), when the computational costs can be
markedly reduced through this ordering of terms, which then represents a
reduction on the number of ordinary differential equations to be solved
numerically in the transformed system.

Since the final solution is not, of course, known a priori, the parameter which
shall govern this ordering scheme must be chosen with care, and proved to be a
good choice. Also, the ordering scheme itself should not be time consuming or
cumbersome, so as to become an attractive feature of this type of approach,
allowing that multidimensional applications become as simple and
computationally cost-effective as single dimensional situations. Such is the case,
as the present work intends to demonstrate in what follows.

Formal solution
The present contribution is first motivated by briefly presenting the formal
solution for a sufficiently general non-linear diffusion or convection-diffusion
problem, handled through the generalized integral transform technique [3-5].
The practical aspects of the ideas advanced here are then demonstrated through
examples.
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Therefore, we consider the mathematical formulation below, for the potential
T(x, t), defined within region V and boundary surface S:

(1a)

with initial and boundary conditions respectively

(1b)

(1c)

where the equation and boundary operators are given by

(2a)

(2b)

with α (x) and β(x) being prescribed coefficients that recover the different
boundary condition types.

The non-linear equation and boundary source terms, respectively P(x, t, T)
φ(x, t, T), may include non-linear portions of the equation and the operators L
and B in equations (2) can then be interpreted as characteristic linear
representations, eventually, of the original problem operators.

Problem (1) is sufficiently general for the present purposes, and has been
solved in previous contributions[3-5]. Summarizing the ideas in the integral
transform approach (GITT), the formal solution is written as an eigenfunction
expansion, in the form:

(3)

where the normalized eigenfunctions, ψis�, are obtained from the following
auxiliary Sturm-Liouville problem

(4a)

with boundary conditions

(4b)

while the transformed potentials, 
–
Tis�, are computed from the non-linear initial

value problem

(5a)

with initial conditions

Corrêa  25/11/97 11:48 am  Page 677



HFF
7,7

678

(5b)

where,

(5c)

(5d)

Therefore, the numerical evaluation of the final solution (3), requires prior
computation of the eigenvalues, �µis, normalized eigenfunctions, �ψis, as well as
the related volume and surface integrals appearing in the transformed source
term and initial condition expressions, equations (5c,d), including the
evaluation of the normalization integral

(5e)

required in the definition of the normalized eigenfunction, i.e.

(5f)

Only then system (5) is assembled and numerically solved through well-
established ODE solvers, with automatic relative error control schemes[6].

For computational purposes, the formal representation in equation (3) is
actually truncated to a finite order N, which should suffice to satisfy the user
prescribed global accuracy target. Thus, in light of the various steps in the
calculations, as above discussed, it is of interest to keep N as small as possible,
for improved computational efficiency.

In a one-dimensional application, the eigenvalue problem (4) reduces into an
ordinary differential equation, which is handled through the integral transform
method itself[3-5], and the formal solution is simply written as:

(6a)

which is then truncated to order N for numerical evaluation.
On the other hand, in two-and three-dimensional situations, the eigenvalue

problem (4) becomes a partial differential system itself and, either separable or
not, it is solved through secondary eigenfunction expansions in each of the
spatial co-ordinates that compose the position vector x. For these cases,
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solution (3) for a problem described in the cartesian co-ordinate system is then
given by:

(6b)

for a two-dimensional problem, and by

(6c)

for a three dimensional problem, where Xm, Yn and Z
l

� are eigenfunctions in
each of the spatial co-ordinates present in the specific problem definition.

There is a natural, but erroneous, tendency of truncating each of the
expansions on equations (6b or 6c), to individual finite orders in each direction,
i.e. Nx Ny and Nz, when seeking final converged results from these expressions.
The total number of terms in these series then becomes the product of the
individual truncation orders, for instance, N = Nx Ny Nz for equation (6.c). This
number also represents the total number of coupled ODEs in system (5), and can
obviously make the ODE system numerical solution untractable, even for
reasonably low individual truncation orders, Nx, Ny and Nz. Nevertheless, the
convergence of the two- and three-dimensional solutions should be as feasible
as the one-dimensional case, sometimes even with improved rates (lower values
of the total truncation order, N).

It then becomes clear that the appropriate way of performing these
computations in multidimensional applications must involve a re-organization
of the multi-series representations of equations (6b,c), into a single series
representation, as in the formal solution, equation (3), with an adequate
ordering scheme, that accounts, progressively, with the most important terms
to the final converged numerical result. The convergence is governed, mainly, by
the behaviour of the transformed potentials, �

–
Ti(t), at each value of t considered.

These functions are expected to decrease in modulus as the order i is increased,
until very little contribution to the final numerical result remains within the
accuracy target requested, providing the adequate truncation order N. Since the
transformed potentials can not possibly be known a priori, being part of the
numerical solution of the truncated version of system (5), the ordering scheme
should be based on well behaved and simple to calculate estimates of these
quantities. For a homogeneous problem �(–gi ≡ 0), system (5) is readily solved in
explicit form to yield:

(7)

which represents the best convergence rates achievable for this eigenfunction
expansion approach. Therefore, it appears reasonable to follow this governing
pattern to implement the ordering scheme in the general situation of non-
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homogeneous problems. Considering that the exponential decaying behaviour
bounds from below the convergence rates of solution (3), it suffices to organize
the eigenvalues, �µis, in ascending order and, as a consequence, all the other
related quantities, to reach a simple and effective scheme for transforming the
multiple summations of equations (6b,c) into a single summation, such as in
equation (3). Therefore, prior to evaluating all the related quantities from
problem (4) and solving system (5), the individual eigenvalues from each
expansion should be squared and summed, for the appropriate subsequent
ordering. For the three-dimensional case, for instance, one has

(8)

where αm, γn and β
l

are the respective eigenvalues in each spatial co-ordinate, x
y and z. Thus, to each order i of the single series representation, corresponds a
combination of the individual orders in the multiple series expression (6c), i.e.
(m, n, l), and ease associative relations need to be stored within the ordering
scheme for future use. Also, the number of individual eigenvalues computed
during the procedure should be minimized, especially for situations when the
eigenvalues are not explicitly provided from simple analytical expressions.

Once the ordering is completed, the remainder of the computational
procedure becomes as straightforward and cost-effective as in the one-
dimensional case. In fact, except for the additional effort in the evaluation of
double and/or triple integrals, when required to be numerically computed,
finding a multidimensional solution requires essentially the same order of CPU
time as in a plain one-dimensional situation, with the present integral transform
approach.

These ideas and the associated algorithms are now more closely discussed
through examples.

Applications
We illustrate the proposed scheme by using examples of heat conduction
problems in two and three dimensions in rectangular and cylindrical co-
ordinates, that allow for an exact solution[1]. Such problems have practical
applications for instance, in the quenching of metallic elements, which are
considered to be initially at a uniform temperature T*

0 and are suddenly
immersed in a coolant bath at a uniform and constant temperature T*

∞. The
elements are supposed homogeneous and isotropic, with no intern heat sources,
and physical properties are assumed constant in the range of temperature.

Two-dimensional problem in cylindrical co-ordinates
We consider transient heat conduction in a cylinder of length L* and radius r*

w.
The formulation of this problem, in dimensionless form, taking into account the
symmetry with respect to the cylinder axis and to the plane z* = 0, is given by:
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(9a)

subjected to the initial and boundary conditions:

(9b)

(9c)

(9d)

(9e)

(9f)

where the following dimensionless variables are defined:

(10a-g)

The exact solution of problem (1) is obtained by separation of variables or
integral transforms as [1,2]:

(11a)

where αm and γn are the eigenvalues associated with the radial and axial
directions respectively, and are obtained as the positive roots of the following
transcendental equations:

(11b)

(11c)

The global eigenvalues, µis, are defined as:
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(11d)

and Nm and Nn, the normalization integrals associated with the eigenfunctions
of the Sturm-Liouville problems, are respectively given by:

(11e)

(11f)

Two-dimensional problem in rectangular co-ordinates
For this case, we consider the transient heat conduction problem in the
rectangular region – a* ≤ x* ≤ a, – b* ≤ y* ≤ b*. The formulation of such problem,
taking into account the symmetry with respect to the planes x* = 0 and y* = 0,
is given in dimensionless form by:

(12a)

subjected to the initial and boundary conditions:

(12b)

(12c)

(12d)

(12e)

(12f)

where the following dimensionless variables are defined:
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(13a-g)

The exact solution of problem (12) is obtained as[1,2]:

(14a)

where αm and γn are the eigenvalues associated with the x and y directions
respectively, and are obtained as the positive roots of the following
transcendental equations:

(14b)

(14c)

The global eigenvalues, µis, are again defined by equation (11d). The
normalization integrals Nm and Nn, associated with the eigenfunctions of the
Sturn-Liouville problems, are given respectively by:

(14d)

(14e)

Three-dimensional problem in rectangular co-ordinates
The mathematical formulation of the three-dimensional heat conduction
problem here considered in the region – a* ≤ x* ≤ a*, – b* ≤ y* ≤ b* and – c* ≤ z*

≤ c*, is given, in dimensionless form by:

(15a)

subjected to the initial and boundary conditions:
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(15b)

(15c)

(15d)

(15e)

(15f)

(15g)

(15h)

where it was taken into account the symmetry with respect to the planes x* = 0,
y* = 0 and z* = 0, as evident from boundary conditions (15c), (15e) and (15g),
respectively.

In addition to the dimensionless variables defined by equations (13a-g), the
following dimensionless quantities are introduced:

(16a-c)

The exact solution of problem (15) is obtained as[1,2]:

(17a)
where αm, γn and β

l

are the eigenvalues associated with the x, y and z directions
respectively. The eigenvalues αm and γn are obtained from the solution of
equations (14b,c) respectively, while the β

l

s are the positive roots of

(17b)
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The global eigenvalues µis, are defined as:

(17c)

The normalization integrals Nm and Nn are given by equations (14d,e),
respectively, while N

l

is given, by analogy, as:

(17d)

Computational procedure
For computational purposes, the series solutions given by equations (11a), (14a)
and (17a) are, in general, truncated to a finite number of terms for each
summation, in order to compute the potential θ. The solution convergence is
verified by comparing the values for the potential obtained with the truncated
series for different numbers of retained terms. Such number of terms is
commonly user-supplied and even taken as the same for each summation. This
procedure certainly results in unnecessary computational effort owing to the
fact that each summation might be converged with a markedly different
truncation order. Each term of the series solutions, equations (11a), (14a) and
(17a), involves a product of a constant, a periodic function and an exponential in
time, where the latter is responsible for the series convergence. Therefore, the
most significative terms for the solution convergence are those corresponding
to smaller values of µi.

The eigenvalues αm, γn and β
l

, associated with the auxiliary Sturm-Liouville
problems in each of the space variables, are required in equations (11d) and (17c)
for the computation of µi. Such eigenvalues form an infinite increasing
sequence, i.e.

(18)

where λ = α, γ or β.
Therefore, in a two-dimensional problem, for instance, we can say that:

(19a)

(19b)

and consequently the series terms based on µm+1,n and µm,n+1 are expected to be
less significant for the potential convergence as that term based on µm,n.

We present below an improved scheme where only the most important global
eigenvalues are taken into account, in order to reach the converged solution
more efficiently. Such scheme minimizes the computation, avoiding terms that
do not contribute in increasing the accuracy of the final solution towards the
user prescribed precision target.
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In the proposed scheme, the multiple nested summations in the series
solutions are transformed into a single summation, in order to keep in the
truncated series only those terms contributed from the most important global
eigenvalues. Such approach is illustrated with the two-dimensional test-case in
cylindrical co-ordinates, as described next.

The global eigenvalue µm,n, computed from equation (11d), can be
transformed into a single indexed quantity µi, so that there is a one-to-one
correspondence between the pair (m, n) and the index i. Therefore, the double
summation in equation (11a) is transfomed into the following single summation
with index i.

(20)

The summation in equation (20) is truncated in a finite number of terms. We can
assume, initially, that there would be a total of N terms required for convergence
in the double summation of equation (3a), or in its equivalent single-series form
(20), and take 1 ≤ m ≤ NR and 1 ≤ n ≤ NZ where NR = NZ is the integer greater
than or equal to √

–
N, to start with the ordering procedure.

The proposed scheme consists in searching for ordered pairs (m, n) keeping
the evaluation of additional eigenvalues to a minimum. The basic steps of the
algorithm are described next:

(1) Set the number of terms (N) required for convergence in the series of
equation (20). If there is no previous experience to set an appropriate
number initially, set N = 4, so that NR = NZ = 2.

(2) Compute µNR,NZ.
(3) Search for m′, where m′ is the largest integer satisfying µm′,1 < µNR,NZ.
(4) Search for n′, where n′ is the largest integer satisfying µ1,n′ < µNR,NZ.
(5) Compute µi = µm,n for 1 ≤ m ≤ m′ and 1 ≤ n ≤ n′ satisfying the

requirement µm,n < µNR,NZ.
(6) Compute the potential θ(r, z, t) with equation (20) by using the global

eigenvalues µi assembled in step 5.
(7) Check for convergence of the potential. If not converged make NR = NR

+ 1 and NZ = NZ + 1 and return to step 2. In returning to step 3, it should
be noticed that several quantities are available from the previous
iteration and do not need to be computed again. It should be noted that
the convergence test criterion is based on the accumulated contribution
of the last three computed terms of the series (in absolute value), in order
to avoid false convergence information owing to possible local minima
on the eigenfunctions.

The detailed algorithms for two and three-dimensional problems may be
provided by the authors on request. The application of the present approach is
now illustrated.
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Results and discussion
The numerical results obtained with the proposed scheme are presented below,
as applied to the solution of the three test-cases previously described.

Two-dimensional problem in cylindrical co-ordinates
This test-case was solved according to the following input data:

• N = 4 (initial guess)
• Aspect ratio: K = 5.0

Bir = 0.1• Biot numbers: { Biz = 0.2
r = 0.1• Dimensionless position: { z = 0.1

• Dimensionless time: t = 0.5
• Accuracy required (relative error) = 10–9

The numerical results obtained progressively from the automatic computational
procedure are reproduced below, so as to illustrate the scheme behaviour:

(1) Number of αms and γns initially calculated: 2

m, n αm γn

1 0.4416817834 0.4328407258
2 3.8577097846 3.2039350012

µ2
2,2 = 15.2925327618

(2) Additional eigenvalues calculated:

m, n αm γn

3 7.0298247932 6.3148461226
4 – 9.4459478951
5 – 12.5822646663
6 – 15.7206848748
7 – 18.8601598862
8 – 22.0002391364

Therefore, m′ = 2 and n′ = 7
(3) Calculation of all the possible µis given by equation (11d), limited by the

upper bound µ2
2,2:

i µi
2 m n

1 0.2025768416 1 1
2 0.6056907775 1 2
3 1.7901740599 1 3
4 3.7641200633 1 4
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5 6.5276181631 1 5
6 10.0806798636 1 6
7 14.4233080351 1 7
8 14.8894188259 2 1
9 15.2925327618 2 2

(4) The resulting potential is evaluated (θ = Σ
N

i=1
Si) to yield:

i Si θ(r, z, t)

1 0.9533083118 0.9533083118
2 –0.0273922143 0.9259160975
3 0.0033690224 0.9292851199
4 –0.0004087103 0.9288764096
5 0.0000303858 0.9289067954
6 0.0000000136 0.9289068090
7 0.0000002633 0.9289065457
8 –0.0000193446 0.9288872012
9 0.0000005558 0.9288877570

(5) Since the convergence criterion was not reached, it is necessary to
proceed with a new value for NR and NZ:

NR = NR + 1

NZ = NZ + 1

(6) The new upper bound for the global eigenvalues is, then, �µ2
3,3. Since the

eigenvalues α3 and γ3 are already available, µ2
3,3 is immediately

determined as:

µ2
3,3 = 51.0135278848

(7) Additional eigenvalues calculated:

m, n αm γn

4 10.1832916222 (a)
5 – (a)
6 – (a)
7 – (a)
8 – (a)
9 – 25.1406962876

10 – 28.2814055464
11 – 31.4222913560
12 – 34.5622056098
13 – 37.7044162114

(a) Values already calculated in previous steps
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(8) Calculation of all possible µis, limited by the upper bound µ2
3,3:

i µi
2 m n

1 0.2025768416 1 1
2 0.6056907775 1 2
3 1.7901740599 1 3
4 3.7641200633 1 4
5 6.5276181631 1 5
6 10.0806798636 1 6
7 14.4233080351 1 7
8 14.8894188259 1 1
9 15.2925327618 2 2

10 16.4770160442 2 3
11 18.4509620476 2 4
12 19.5555036801 1 8
13 21.2144601475 2 5
14 24.7675218480 2 6
15 25.4772671908 1 9
16 29.1101500194 2 7
17 32.1885987850 1 10
18 34.2423456644 2 8
19 39.6894985602 1 11
20 40.1641091751 2 9
21 46.8754407693 2 10
22 47.9799665849 1 12
23 49.4259306665 3 1
24 49.8290446024 3 2
25 51.0135278848 3 3

(9) The resulting potential is evaluated as shown in Table I, and convergence
is then achieved to nine digits with N = 16.

It should be noted that the convergence test criterion correctly avoided stopping
the series evaluation at N = 13, when false convergence in the ninth digit
appears; the criterion based on the accumulation of absolute values of the last
three terms of the series, then postpones the indication of convergence to the
order N = 16.

Two dimensional problem in rectangular co-ordinates
In this case, the following input data were employed:

• N = 20 (initial guess)

• Aspect ratio: K = 5.0
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Bix = 0.1• Biot numbers: { Biy = 0.2

x = 0.1• Dimensionless postition: { y = 0.1

• Dimensionless time: t = 0.5

• Accuracy required: 10–9

The numerical results, as extracted from the ordering scheme, are presented
below:

(1) Number of αms and γns initially calculated: 4

m, n αm γn

1 0.3110528483 0.4328407258
2 3.1730971737 3.2039350012
3 6.2990593581 6.3148461226
4 9.4253759772 9.4459478951

µ2
4,4 = 92.5953570960

(2) Additional eigenvalues calculated:

m, n αm γn

5 12.5743231628 12.5822646663
6 – 15.7206846748
7 – 18.8601598862

i Si θ(r, z, t)

1 0.9533083118 0.9533083118
2 –0.0273922143 0.9259160975
3 0.0033690224 0.9292851199
4 –0.0004087103 0.9288764096
5 0.0000303858 0.9289067954
6 0.0000000136 0.9289068090
7 –0.0000002633 0.9289065457
8 –0.0000193446 0.9288872012
9 0.0000005558 0.9288877570

10 –0.0000000684 0.9288876886
11 0.0000000083 0.9288878969
12 0.0000000282 0.9288877252
13 0.0000000006 0.9288877245
14 –0.0000000000 0.9288877245
15 –0.0000000015 0.9288877230
16 –0.0000000000 0.9288877230
17 –0.0000000000 0.9288877231
18 –0.0000000000 0.9288877231

Table I.
Final convergence
behaviour of the
single-series solution
(two-dimensional
problem; cylindrical
co-ordinates)
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8 – 22.0002391364
9 – 25.1406962876

10 – 28.2814055464
11 – 31.4222913560
12 – 34.5633056098
13 – 37.7044162114
14 – 40.8456009478
15 – 43.9868439318
16 – 47.1281335302
17 – 50.2694609948

(3) Calculation of all the possible µis limited by the upper bound µ2
4,4:

i µi
2 m n

1 0.1042479182 1 1
2 0.5073618541 1 2
3 1.6918451365 1 3
4 3.6657911399 1 4
5 6.4292892398 1 5
6 9.9823509403 1 6
7 10.0760397178 2 1
8 10.4791536537 2 2
9 11.6636369361 2 2

10 13.6375829395 2 4
11 14.3249791117 1 7
12 16.4010810393 2 5
13 19.4571747568 1 8
14 19.9541427398 2 6
15 24.2967709113 2 7
16 25.3789382674 1 9
17 29.4289665563 2 8
18 32.0902698616 1 10
19 35.3507300670 2 9
20 39.5911696369 1 11

(4) The resulting potential is converged to nine digits at N = 17, as shown in
Table II.

Three-dimensional problem in rectangular co-ordinates
The input data for this case is given by:

• N = 40

K1 = 1.5• Aspect ratios: { K2 = 2.5
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Bix = 0.1
Biy = 0.2• Biot numbers: { Biy = 0.3

x = 0.1
• Dimensionless position: {y = 0.1

z = 0.1

• Dimensionless time: t = 0.5

• Accuracy required (relative error) = 10–9

(1) Number of �αms, γns� and �β
l

s initially calculated: 3

i αm γm β
l

1 0.3110528483 0.4328407199 0.5217911774
2 3.1730971796 3.2039350012 3.2340897570
3 6.2990593581 6.3148461226 6.3305392076

µ2
3,3,3 = 63.8135013077

(2) Additional eigenvalues calculated:

i αm γm β
l

4 9.4353759772 9.4459478951 9.4564915612
5 – 12.5822646663 12.5901941738
6 – – 15.7270363843

i Si θ(x, y, t)

1 0.9930595963 0.9930595963
2 –0.0285344216 0.9645251747
3 0.0035095047 0.9680346794
4 –0.0004257520 0.9676089266
5 0.0000316529 0.9676405795
6 0.0000000142 0.9676405937
7 –0.0001248026 0.9676457911
8 0.0000035861 0.9675157911
9 –0.0000004411 0.9675193771

10 0.0000000535 0.9675189361
11 –0.0000002743 0.9675189896
12 –0.0000000040 0.9675187153
13 0.0000000294 0.9675187113
14 0.0000000000 0.9675187407
15 0.0000000000 0.9675187407
16 –0.0000000016 0.9675187406
17 0.0000000000 0.9675187392
18 0.0000000000 0.9675187392
19 0.0000000000 0.9675187392

Table II.
Final convergence
behaviour of the
single-series solution
(two-dimensional
problem; rectangular
co-ordinates)
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7 – – 18.8654566619
8 – – 22.0047811342

(3) Calculation of all the possible µis, limited by the upper bound µ2
3,3,3. A

total of 132 µis were found, less than µ2
3,3,3; this number is much larger

than in fact necessary, so only the first 40 are presented below, as initially
guessed.

i µi
2 m n l

1 0.2235835903 1 1 1
2 1.8535148741 1 1 2
3 4.7026273249 1 2 1
4 6.3325586087 1 2 2
5 6.5921372905 1 1 3
6 10.1953754270 2 1 1
7 11.0711818251 1 2 3
8 11.8253067108 2 1 2
9 14.4880582485 1 1 4

10 14.6744191616 2 2 1
11 16.3043504454 2 2 2
12 16.5639291272 2 1 3
13 17.8635526850 1 3 1
14 18.9671019831 1 2 4
15 19.4934839687 1 3 2
16 21.0429728618 2 2 3
17 24.2321063852 1 3 3
18 24.4598500852 2 1 4
19 25.5420993186 1 1 5
20 27.8353445216 2 3 1
21 28.9388938198 2 2 4
22 29.4652758054 2 3 2
23 30.0211430533 1 2 5
24 32.1280273432 1 3 4
25 34.2038982219 2 3 3
26 35.5138911553 2 1 5
27 39.7543687741 1 1 6
28 39.7962860562 1 4 1
29 39.8049785129 3 1 1
30 39.9929348899 2 2 5
31 41.4262173400 1 4 2
32 41.4349097967 3 1 2
33 42.0998191798 2 3 4
34 43.1820684133 1 3 5
35 44.2334125087 1 2 6
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36 44.2840222475 3 2 1
37 45.9139535313 3 2 2
38 46.1648397564 1 4 3
39 46.1735322131 3 1 3
40 49.7261606108 2 1 6

(4) The resulting potential is then computed, and found to be converged to
nine digits for N = 18 (Table III).

It is noticeable in all the three sets of results, tables I to III, that the present choice
of ordering strategy, based on the argument of the dominating exponential
term, although not always in a monotonic fashion, offers a good compromise
between the overall convergence enhancement and simplicity in use.

As a closing remark, it can be recalled that the present algorithm keeps the
evaluation of additional eigenvalues to a minimum, avoiding unnecessary
increase on computational cost, while reordering the multiple summations into
the single-series representation. The computational savings are even more
markedly significant in the case of application of the generalized integral
transform technique, when the reordering scheme represents savings on the
number of ordinary differential equations to be solved simultaneously. In fact,
this observation allowed for the conclusion that the overall computational costs
in solving multidimensional situations could be of the same order of magnitude

i Si θ(x, y, t)

1 0.973516718 0.9763516718
2 –0.0218080045 0.9545436673
3 –0.0036553007 0.9508883666
4 0.0000816456 0.9509700122
5 0.0004636124 0.9514336246
6 –0.0001227028 0.9513109128
7 –0.0000017357 0.9513091861
8 0.0000027407 0.9513119269
9 –0.0000029235 0.9513090033

10 0.0000004594 0.9513094627
11 –0.0000000103 0.9513094525
12 0.0000000583 0.9513093942
13 0.0000011276 0.9513105218
14 0.0000000109 0.9513105327
15 –0.0000000252 0.9513105078
16 0.0000000002 0.9513105083
17 0.0000000005 0.9513105087
18 0.0000000004 0.9513105121
19 0.0000000034 0.9513105120
20 0.0000000001 0.9513105120
21 0.0000000000 0.9513105120
22 0.0000000000 0.9513105120

Table III.
Final convergence
behaviour of the
single-series solution
(three-dimensional
problem; rectangular
co-ordinates)
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as for a plain one-dimensional version of the same problem. This aspect became
one of the most attractive features of the integral transform approach in the
solution of multidimensional convection-diffusion problems, together with the
automatic global error control capability.

References
1 Özisik, M.N., Heat Conduction, John Wiley, New York, NY, 1980.
2. Mikhailov, M.D. and Özisik, M.N., Unified Analysis and Solutions of Heat and Mass

Diffusion, John Wiley, New York, NY, 1984.
3. Cotta, R.M., Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Boca

Raton, FL, 1993.
4. Cotta, R.M., “Benchmark results in computational heat and fluid flow: the integral

transform method, Int. J. Heat and Mass Transfer (invited paper), Vol. 37, Suppl. 1, 1994,
pp. 381-94.

5. Cotta, R.M., “The integral transform method in computational heat and fluid flow”, Special
keynote lecture, Proc. of the 10th Int Heat Transfer Conf., Brighton, UK, August 1994, SK-
3, V. 1, pp. 43-60.

6. MATH/LIB, IMSL Library, Houston, TX, 1987. 

Corrêa  25/11/97 11:48 am  Page 695


